
A Cryptographic Note on the Rainstorm Hash Function

(Cris)

December 17, 2024

Introduction

Rainstorm is a proposed hash function featuring a 1024-bit internal state S that processes data
in 512-bit blocks. Its design deliberately blends concepts from multiple well-established cryp-
tographic paradigms. Rather than adhering strictly to Merkle-Damgård, Feistel, sponge, or
ARX constructions, Rainstorm borrows from each of these ideas, forging a hybrid approach.
Instead of the standard ARX (Add/Rotate/XOR) pattern, Rainstorm uses XSR (XOR, Sub-
tract, Rotate), where subtraction mod 264 replaces addition. This subtle shift maintains fast,
hardware-friendly mixing while introducing a slightly different algebraic structure.

Drawing inspiration from iconic designs like DES and Blowfish, Rainstorm also employs
carefully chosen constants and rotation amounts, echoing the classical approach of using round-
dependent parameters to maximize diffusion. By merging multiple paradigms and tuning pa-
rameters with the help of statistical testing tools like SMHasher3, Rainstorm seeks to explore
new design space in hash functions—potentially offering unique security properties if thoroughly
validated.

However, Rainstorm’s complexity and unconventional blend of methods mean its true secu-
rity remains unproven. This note outlines the motivation behind this hybrid design, examines
its relationship to established primitives, details its mixing strategy, and discusses areas where
cryptanalysis is needed. It encourages cryptographers to investigate whether Rainstorm can
withstand modern attacks and what lessons can be drawn from its construction.

Motivation: Why Merge These Paradigms?

Over decades of cryptographic research, different approaches to hashing and encryption have
emerged, each with its own strengths and weaknesses:

• Merkle-Damgård (MD) Hashes: While MD5, SHA-1, and similar schemes are now
broken or weakened, the iterative compression approach they pioneered remains concep-
tually elegant. Processing the message in fixed-size blocks, updating an internal state
iteratively, and then producing a final digest is a well-understood paradigm that ensures
every part of the input message influences the final hash.

• Feistel Networks (e.g., DES, Blowfish): Feistel constructions achieve balanced dif-
fusion by splitting the state into two halves and alternating which half is transformed
each round. DES and Blowfish demonstrated how clever choice of round functions and
constants can complicate cryptanalysis, and showed that even a relatively “weak” round
function, when iterated enough times, can yield a strong overall design. Borrowing this
half-state alternation can enhance desirable diffusion properties even in a hash setting.

1

• Sponge Constructions (e.g., Keccak/SHA-3): The sponge framework’s absorb-then-
permute-then-squeeze model provides flexibility, extendable outputs, and robust security
properties when well-designed. While Rainstorm is not a full sponge (it doesn’t follow
the same padding rules or full permutation structure), it can mimic certain sponge-like
behaviors, such as absorbing input and optionally re-injecting output as new input for
arbitrary-length outputs.

• XSR (XOR, Subtract, Rotate) Operations: Classic ARX primitives (e.g., ChaCha,
Salsa20) rely on repeated application of a “weak” round function to achieve complexity.
Rainstorm’s XSR approach similarly depends on iteration. By using subtraction instead
of addition, it introduces a twist that still disrupts linear patterns efficiently, while re-
taining ARX’s strength of simplicity and speed. This provides nonlinearity and efficient
mixing without the complexity of S-boxes. Combined with chosen rotation amounts and
subtraction constants, Rainstorm’s XSR aims to spread input differences widely across
the state.

By blending these ideas, Rainstorm attempts a defense-in-depth strategy. Breaking it might
require overcoming multiple structural hurdles simultaneously. While no single paradigm guar-
antees security—MD constructs were broken, DES is outdated, and ARX-only ciphers have
known forms of analysis—the hope is that combining their “best” aspects and carefully chosen
constants yields a more resistant design.

The Use of Iterated Weak Functions

Many well-known designs rely on repeating a relatively simple or “weak” round function multiple
times to achieve cryptographic strength. For example:

• Block Ciphers Like DES and Blowfish: Each round’s transformation (the Feistel
function) is not individually cryptographically strong. However, applying it repeatedly
(16 rounds in DES, variable in Blowfish) compounds complexity and makes the final
construction secure enough for its era and key sizes.

• Sponge-Based Functions (Keccak/SHA-3): The Keccak permutation is a repeated
application of a simple, “weak” round. A single round of Keccak is not considered secure
by itself, but multiple rounds produce a strong permutation.

• ARX-Based Designs (e.g., ChaCha): ChaCha’s quarter-round function is simple,
but applying it many times in a structured way yields a strong stream cipher.

Rainstorm follows this common pattern: it defines a simple mixing step (weakfunc) that
is not individually secure, but repeated sufficiently many times—guided by empirical test-
ing—results in a well-mixed, statistically strong output. By combining elements of MD it-
eration, Feistel mixing, sponge-like absorption, and XSR operations, Rainstorm aims to create
complexity through iteration, much like these other established designs.

Guided by Statistical Testing (SMHasher3)

Rainstorm’s development was iterative and guided by SMHasher3, a suite of statistical tests for
hash functions. Through trial and adjustment, the designer found that at least four rounds of

2

its mixing function are needed to pass all 238 SMHasher3 tests. One round fails many tests,
two or three rounds still show some weaknesses, but at four rounds every test passes, indicating
strong statistical mixing properties.

This iterative tuning reveals a knob for balancing performance and security:

• Fewer Rounds: Faster but weaker statistically.

• More Rounds: Slower but more complex and potentially more secure.

While passing SMHasher3 does not guarantee cryptographic strength, it suggests that Rain-
storm’s chosen constants, rotation amounts, and iteration count produce a well-mixed output
distribution. This empirical approach can inspire cryptanalysts to investigate whether these
statistical properties hold up under adversarial attacks.

Drawing Inspiration from Established Constructions

Rainstorm’s structure is influenced by multiple paradigms:

Merkle-Damgård-like Iteration

Like MD-based schemes (e.g., SHA-2), Rainstorm processes the input message in blocks. Each
block updates the internal state S, ensuring all parts of the message contribute to the final hash.
Even though pure MD-based hashes like MD5 are compromised, the iterative idea remains a
solid foundation for incrementally absorbing large messages.

Feistel-like Internal Mixing

Rainstorm splits its 1024-bit state into two 512-bit halves, updating one half at a time while
referencing the other. This is reminiscent of Feistel networks like DES and Blowfish, where
each round transforms one half and then swaps. Rainstorm’s approach ensures that differences
introduced in one half propagate thoroughly into the other over successive rounds. By carefully
choosing constants and rotation schedules—somewhat like the fixed S-boxes and key schedules
in DES or Blowfish—Rainstorm aims to achieve robust diffusion.

Sponge-Inspired, Not Full Sponge

Although not a full sponge (it lacks formal sponge padding and rate/capacity division), Rain-
storm’s large state and iterative round function allow it to absorb message data and poten-
tially continue “absorbing” its own output to produce longer results, a behavior analogous to
an extendable-output function (XOF). This sponge-inspired flexibility means that Rainstorm
could be adapted to produce variable-length outputs, opening doors to uses beyond standard
fixed-size hashing.

XSR for Mixing Without S-boxes

Replacing addition with subtraction doesn’t reduce efficiency. XOR and rotation, staples of
ARX designs, remain. This slight twist—XSR—maintains speed and simplicity, introducing just
enough variation to potentially resist ARX-focused attacks. Without fixed S-boxes, Rainstorm

3

relies on carefully chosen constants and rotation amounts to ensure avalanche and disrupt
patterns, similar to how Blowfish used carefully-crafted S-boxes and rotation strategies.

Tuning and Development Methodology

Rainstorm’s parameters, such as chosen constants and the number of rounds, were guided by
iterative testing with tools like SMHasher3. SMHasher3 subjects the hash output to a wide
range of statistical tests. Empirically, Rainstorm found that four rounds were sufficient to pass
all tests with the chosen constants, while fewer rounds failed some tests.

This suggests a tunable security parameter. One round isn’t secure, two or three struggle
with some tests, but at four rounds we get robust statistical properties. Increasing rounds
presumably increases security margins, at the cost of performance.

From Classical Primitives to Rainstorm: Side-by-Side Compar-
isons

Comparing Rainstorm with well-known primitives:

Merkle-Damgård vs. Rainstorm

Merkle-Damgård Step:

S ← f(S, Mi)

Repeat per block.

Rainstorm Step:

S ← F (S, Mi, constants)

Repeat per block.
While Merkle-Damgård uses a traditional compression function f , Rainstorm’s F uses XSR

transformations to incorporate message blocks into a large state, blending old concepts with
fresh ideas.

Feistel-Like Alternation in Rainstorm

Feistel Step:

S = (L||R)

L← R

R← L⊕ F (R)

Rainstorm Version:

S = (SL||SR)

SL ← F (SL, M, K, Z)

SR ← SR ⊕ SL

Alternating which half is updated each round helps spread differences throughout the state,
much like a Feistel network.

XSR Operations in Rainstorm

Classical ARX:

S ← (S + M)⊕R

Rainstorm (XSR) Version:

SL ← (SL ⊕M)−K

SL ← ROTR64(SL, Z)

4

XSR provides a similar lightweight, hardware-friendly way to achieve non-linearity and con-
fusion.

Detailed Examination of the Weak Function (weakfunc)

The heart of Rainstorm’s design is its “weak function” applied multiple times per block. While
a single application is weak, repeated iterations build complexity. The weak function integrates
the message block M , a set of constants K, rotation schedules Z, and the internal state halves
SL, SR:

Listing 1: Rainstorm Mixing Function (Conceptual)
def F(S , M, K, Z) :

S_L, S_R = s p l i t (S)

I n g e s t M in to S_L, then s u b t r a c t K, then r o t a t e
S_L = (S_L ^ M) − K
S_L = ROTR64(S_L, Z)

Blend updated S_L in to S_R
S_R = S_R ^ S_L

return combine (S_L, S_R)

This simplified pseudocode omits details like counters and “folding.” The actual implemen-
tation uses counters and conditions depending on whether we’re updating the “left” half or the
“right” half, mimicking a Feistel-like pattern. Counters ensure that each round differs slightly,
preventing the state from falling into predictable cycles.

Folding, Counters, and Constants

Folding certain values back into the state and employing counters after each update add com-
plexity. These steps prevent stable differentials from easily forming. The constants K and
rotation amounts Z were chosen to produce good avalanche properties, informed by trial, test-
ing, and lessons from older ciphers.

This approach echoes the principle used in DES and Blowfish, where constants and rotation
schedules were deliberately chosen (and sometimes derived from known mathematical constants
or tested sets) to ensure no simple linear or differential structure emerges.

Influence of SMHasher3 on Parameter Choice

Parameters like the number of rounds and the selection of constants weren’t chosen arbitrarily.
Through repeated testing with SMHasher3’s extensive randomness tests, Rainstorm’s designer
found that fewer than four rounds produce statistically detectable patterns. At four rounds,
all tests are passed, suggesting that the combination of XSR operations, chosen constants, and
Feistel-like alternation has reached a threshold of complexity.

While SMHasher3 doesn’t test for deep cryptanalytic strengths (like resistance to differential
cryptanalysis or linear attacks), it does ensure there are no obvious statistical biases. This
empirical feedback loop—test, tweak constants, retest—guided the refinement of Rainstorm’s
parameters.

5

Cryptanalysis Considerations and Open Questions

Despite passing all SMHasher3 tests at four rounds, Rainstorm’s true cryptographic strength
remains unproven. Questions include:

• Round Count: Four rounds suffice to pass SMHasher3, but is that enough for crypto-
graphic security? Would an attacker find shortcuts at fewer rounds or extended attacks
that apply at four rounds?

• Differential and Rotational Attacks: Feistel-like structures and ARX designs are
known battlefields for differential cryptanalysis. XSR may introduce new complexities.
Can subtle patterns survive multiple rounds? Can an attacker find a differential trail that
propagates through the XSR operations and the alternating halves? Are there rotation-
based patterns that survive multiple rounds, or subtle algebraic relationships that could
linearize the state updates?

• Linear and Algebraic Attacks: Without S-boxes, linear approximations may be easier
or harder—this depends on how subtraction and rotation interact algebraically. ARX
primitives have known strategies for linear approximations, and while XSR might differ
slightly, could similar methods apply? Are there hidden structures amenable to lineariza-
tion or algebraic factorization?

• Reduced-Round Analysis: Analyzing a three-round or even two-round variant might
reveal structural weaknesses that are masked at four rounds. Understanding how secu-
rity degrades when we reduce rounds can guide recommendations for practical security
margins.

Why Analyze Rainstorm?

In a landscape where SHA-3, BLAKE3, and other well-established hashes dominate, why spend
time on an outsider’s hybrid design?

• Fresh Cryptanalytic Challenge: Rainstorm’s hybrid nature—MD-like iteration, Feis-
tel alternation, sponge inspiration, and XSR mixing—presents a less familiar target. Tra-
ditional attacks tailored to pure ARX or classical Feistel might not apply directly. This
encourages cryptanalysts to develop or adapt their techniques, potentially advancing the
field.

• Testing Old Assumptions: If Rainstorm resists certain known attacks that easily break
simpler schemes, it might validate the idea of mixing paradigms. Conversely, if cryptana-
lysts find a shortcut, we learn more about the limitations of blending these methods and
where hidden vulnerabilities lie.

• Guiding Future Designs: Understanding Rainstorm’s strengths and weaknesses can
inform future hash designs. Even if Rainstorm never becomes a standard, insights from
its analysis could help designers avoid its pitfalls or incorporate its successful elements.

• Performance and Practical Trade-offs: Rainstorm is relatively fast and can be tuned
by adjusting the number of rounds. If cryptanalysis shows that four rounds already
offer decent resistance, Rainstorm could find niche applications where both speed and
complexity matter.

6

Comparative Positioning and Intended Audience

Rainstorm is experimental, probing whether blending elements from classical paradigms and
leveraging an iterated weak function can yield novel resilience or highlight new weaknesses. It’s
a conceptual prototype—an “academic outsider” experiment that combines known paradigms
in a novel way. Its intended audience includes:

• Cryptanalysts: Researchers who want to test their skills against a new construction
that doesn’t fit neatly into well-known categories.

• Protocol and Primitive Designers: Individuals looking for design inspiration, curious
about whether mixing these paradigms can yield a secure, high-performance function.

• The Broader Crypto Community: Anyone interested in exploring how established
ideas can be recombined, refined, or challenged to inspire the next generation of hashing
strategies.

FAQ and Additional Questions

Q: Why create a new hash when SHA-3 and BLAKE3 are well-established? A:
Rainstorm is experimental. It probes whether blending elements from Merkle-Damgård, Feistel,
sponge-like absorption, and XSR mixing yields new forms of resilience—or reveals fundamental
weaknesses. Studying Rainstorm can provide lessons that inform future designs.

Q: Is it production-ready? A: No. Without extensive cryptanalysis, it’s risky. Think
of Rainstorm as a concept car, not a commuter vehicle. It’s meant to inspire study, not secure
your data today.

Q: How do I tune its security? A: Increase the rounds. Four rounds pass all SMHasher3
tests, but more rounds could raise the security margin. Adjusting parameters and testing again
can help find an optimal balance between speed and complexity.

Q: Is it a sponge? A: Not formally. It’s sponge-inspired but lacks the full structure and
padding rules. It can, however, absorb input and re-inject output to produce extended results,
mimicking sponge-like behavior in a less formal manner.

Conclusion

Rainstorm creatively synthesizes concepts from Merkle-Damgård iteration, Feistel mixing, sponge-
like absorption, and XSR-based operations. Like many known ciphers and hashes that rely on
iterating a weak round function—DES, Blowfish, Keccak, ChaCha—Rainstorm bets that com-
plexity emerges from repetition rather than individual round strength. It synthesizes ideas from
multiple sources: it processes messages iteratively like MD-based hashes, mixes halves Feistel-
style, takes cues from sponge architectures for flexibility, and uses XSR operations (instead of
ARX) to achieve non-linear mixing without S-boxes. Its constants and rotations are chosen with
an eye toward maximizing diffusion, recalling the design principles behind DES and Blowfish.

Guided by SMHasher3 tests, its parameters are tuned to show no obvious statistical weak-
nesses at four rounds. Yet true cryptographic security demands careful scrutiny. Will cryptan-
alysts find hidden linear or differential structures? Will fewer rounds be easily compromised?

7

If Rainstorm breaks under analysis, the community gains insights into what not to do.
If it endures, it validates mixing paradigms and might inform future designs. Either outcome
enriches our understanding, fosters dialogue, and encourages the exploration of hybrid strategies
in cryptographic hash functions.

8

